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One-Way ANOVA

Recall: In the last lecture, we talked about confidence intervals for the
difference of two population means µ1 − µ2. More importantly, we saw
that the design of the experiment or study completely determined how the
analysis should proceed such as (two) independent-sample design and a
matched-pairs design. In fact, the purpose of an experiment is to
investigate differences between or among two or more treatments. In a
statistical framework, we do this by comparing the population means of
the responses to each treatment.

In order to detect treatment mean differences, we must try to control
the effects of errors so that any variation we observe can be
attributed to the effects of the treatments rather than to structural
differences among individuals.

There may be a systematic source of variation arising from the
ages of employees in the recycling project. Age of employees could be
a confounding effect that lead to significant difference in two
independent-sample design.
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One-Way ANOVA

Terminology: Designs involving meaningful grouping of individuals, that
is, blocking, can help reduce the effects of experimental error by identifying
systematic components of variation among individuals. The matched-pairs
design for comparing two treatments is an example of such a design.
Situation: When there are more than two treatments (populations) for an
experiment, we pursue the one-way classification model. Such kind of
experiments set up as follows.

Obtain one random sample of individuals and then randomly assign
individuals to treatments (i.e., different experimental conditions).

In an observational study (where no treatment is physically applied
to individuals), individuals are inherently different to begin with.
Therefore we simply take random samples from each treatment
populations.

Do not attempt to group individuals according to some other factors
(e.g., location, gender, weight, race, etc.).
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One-Way ANOVA

Main point: In one-way classification, the only way individuals are
“classified” is by the treatment group assignment. When individuals are
thought to be “basically alike” (other than the possible effect due to
treatment), experimental error consists only of the variation among the
individuals themselves. There are no other systematic sources of
variability.
Example Mortar mixes are usually classified on the basis of compressive
strength and their bonding properties and flexibility. In a building project,
engineers wanted to compare specially the population mean strengths of
four types of mortars:

1 ordinary cement mortar (OCM)

2 polymer impregnated mortar (PIM)

3 resin mortar (RM)

4 polymer cement mortar (PCM)
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One-Way ANOVA

Random samples of specimens of each mortar type were taken; each
specimen was subjected to a compression test to measure strength (MPa).
An initial question that engineers may have is the following

“Are the population mean mortar strengths equal among the four types of mortars? Or, are the populatin means different?”

This initial question can be framed statistically as the following
hypothesis test:

H0 : µ1 = µ2 = µ3 = µ4 v.s. H1 : at least one not equal

Goal: We now develop a statistical inference procedure that allows us to
test this type of hypothesis in a one-way classification.
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One-Way ANOVA

Figure 1: boxplots of strength data (MPa) for four mortar types
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Overall F-Test

Denote by t the number of treatments (populations) to be compared.
Define

Yij = response on the jth individual in the ith treatment group

for i = 1, 2, . . . , t and j = 1, 2, . . . , ni .

ni is the number of observations for the ith treatment. When
n1 = n2 = . . . = nt , we say the design is balanced; otherwise, the
design is unbalanced.
Denote by N = n1 + n2 + . . .+ nt the total number of individuals
measured. If the design is balanced, then N = nt.
Define the statistics

Ȳi+ =
1

ni

ni∑
j=1

Yij , S2
i =

1

ni − 1

ni∑
j=1

(Yij − Ȳi+)2

Ȳ++ =
1

N

t∑
i=1

ni∑
j=1

Yij
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Overall F-Test

The statistics Ȳi+ and S2
i denote the sample mean and the sample

variance, respectively, of the ith treatment group. The overall
sample mean Ȳ++ is the sample mean of all the data (aggregated
across all t treatment groups).

The null hypothesis H0 says that there is “no treatment difference”,
that is, all t populations means are the same.

The alternative hypothesis H1 syas that a difference among the t
population means exits “somewhere”. It does not specify how the
means are different.

When performing a hypothesis test, we basically decide which
hypothesis is more supported by the data.
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Overall F-Test

Setting: Suppose that we have t independent random samples:

Sample 1: Y11,Y12, . . . ,Y1n1
i .i .d∼ N (µ1, σ

2)

Sample 2: Y21,Y22, . . . ,Y2n2
i .i .d∼ N (µ2, σ

2)

. . . . . . . . . . . . . . . . . . . . .

Sample t: Yt1,Yt2, . . . ,Ytnt
i .i .d∼ N (µt , σ

2)

Assumption: Note the statistical assumption we are making

1 the t random samples are independent

2 the t population distributions are normal

3 the t population distributions have the same variance σ2

If we are trying to learn about how the population means compare, why is
the statistical inference procedure designed to do this called “the analysis
of variance”?
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Overall F-Test

We learn about the population means by estimating the common variance
σ2 in two different ways. The two estimators are formed by

Within Estimator: measuring variability of the observations within each
treatment group

Across Estimator: measuring variability of the sample means across the
treatment groups

The two estimators tend to be similar when H0 is true. The second
estimator tends to be larger than the first estimates when H1 is true.
Within Estimator: calculate the residue sum of squares:

SSres = (n1 − 1)S2
1 + (n2 − 1)S2

2 + . . .+ (nt − 1)S2
t

=
t∑

i=1

ni∑
j=1

(Yi j − Ȳi+)2︸ ︷︷ ︸
(ni−1)S2

i
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Overall F-Test

Within Estimator

The residual mean squares MSres = SSres
N−t is an unbiased estimator

of σ2 regardless of whether H0 or H1 is true.

The sample variance S2
i estimates the population parameters σ2

(which assumed to be common across all t populations) from within
the ith sample.

The within estimator MSres is a generalization of the pooled sample
variance estimator S2

P in two-sample inference.

Across Estimator: We assume a common sample size
n1 = n2 = . . . = nt = n to simplify notation (i.e., a balanced design). The
unbiased estimator of σ2 (when H0 is true) is

MStrt =
1

t − 1

t∑
i=1

n(Ȳi+ − Ȳ++)2︸ ︷︷ ︸
SStrt
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Overall F-Test

Recall that the sample mean is also normally distributed when the sample
arise from a normal population. Therefore, the sample mean of the ith
treatment group

Ȳi+ ∼ N (µi ,
σ2)

n

When the null hypothesis H0 : µ1 = µ2 = . . . = µt is true, we have

Ȳ1+, Ȳ2+, . . . , Ȳt+
i .i .d∼ N (µ,

σ2

n
)

Consider Ȳ1+, Ȳ2+, . . . , Ȳt+ as a random sample from the N (µ, σ
2

n )
population distribution, the sample variance of this “random sample” is

1

t − 1

t∑
i=1

(Ȳi+ − Ȳ++)2

and is an unbiased estimator of σ2/n.
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Overall F-Test

Therefore,

MStrt =
1

t − 1

t∑
i=1

n(Ȳi+ − Ȳ++)2︸ ︷︷ ︸
SStrt

is an unbiased estimator of σ2 when H0 is true. If we have different sample
size ni , we simply adjust MStrt to

MStrt =
1

t − 1

t∑
i=1

ni (Ȳi+ − Ȳ++)2︸ ︷︷ ︸
SStrt

This is still an unbiased estimator for σ2 when H0 is true.
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Overall F-Test

Summary

1 When H0 is true(the population means are equal), then

E (MStrt) = σ2,E (MSres) = σ2 ⇒ F =
MStrt
MSres

≈ 1

2 When H1 is true(the population means are different), then

E (MStrt) > σ2,E (MSres) = σ2 ⇒ F =
MStrt
MSres

> 1

Sampling Distribution: When H0 is true, the statistic

F =
MStrt
MSres

∼ Ft−1,N−t
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Overall F-test

Recall the mean of an F distribution is around 1, therefore

Values of F in the center of this distribution are consistent with H0.

Large values of F (out in the right tail) are consistent with H1.

Unusually small values of F (close to zero) are not necessarily
consistent with either hypothesis. This is more likely to occur when
there is a violation of our statistical assumptions such as correlated
individuals within/across samples, unequal population variances,
normality departures, etc.

Mortar data: Use R to calculate the F statistics.

> anova(lm(strength ~ mortar.type))

Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

mortar.type 3 1520.88 506.96 16.848 9.576e-07

Residuals 32 962.86 30.09
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Overall F-test

Figure 2: F3,32 pdf. This is the sampling distribution of F for the mortar data
when H0 is true. An “×” at F = 16.848 has been added.
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Overall F-test

The form of the ANOVA one-way classification table is given as follows.

Source df SS MS F

Treatments t-1 SStrt MStrt = SStrt
t−1 F = MStrt

MSres
Residuals N-t SSres MSres = SSres

N−t
Total N-1 SStotal

In general, it is easy to show that

SStotal =
t∑

i=1

ni∑
j=1

(Yij − Ȳ++)2

=
t∑

i=1

ni (Ȳi+ − Ȳ++)2 +
t∑

i=1

ni∑
j=1

(Ȳij − Ȳi+)2

= SStrt + SSres
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Overall F-test

SStotal measures how observations vary about the overall mean,
without regard to treatment groups; that is, SStotal measures the
total variation in all the data

SStotal can be partitioned into two components:

– SStrt measures how much of the toal variation is due to the treatment
groups.

– SSres measures what is left over, which we attribute to inherent
variation among individuals.

The probability value (p-value) for a hypothesis test measures how
much evidence we have against H0. It is important to remember

the smaller the p-value⇒ the more evidence against H0

The p-value is a probability. For the mortar data, the p-value can be
interpreted as If H0 is true, the probability we should get a test
statistic equal to or larger than F = 16.848 is 9.576× 10−8.
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Overall F-test

P-value Rules: Probability values are used in more general hypothesis
test settings in statistics.

Common values of α chosen beforehand are α = 0.1 and α = 0.05
(the most common).

The smaller the α is chosen to be, the more evidence one requires to
reject H0.

The value of α chosen by the experimenter determines how small the
p-value must get before H0 is ultimately rejected.

For the mortar data, there is no ambiguity. For other situations, like
p-value=0.06, the decision may not be as clear cut.

Assumptions/Robustness: There are three main assumptions when
performing an analysis of variance:
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Overall F-test

1 Independent random samples. This assumption holding is largely
up to the experimenter/investigator, like drawing random samples
from the different populations independently (in the case of an
observational study) or using randomization to assign individuals to
treatments (in an experiment).

2 Normality. Each of the t population distributions is normal. The
one-way ANOVA analysis is robust to normality departure.

3 Equal population variances. This is the most important
assumption.

A one-way ANOVA analysis is not robust to departures from this
assumption, and it is very critical.
If you suspect the population variances may be markedly different, then
you should not use a one-way ANOVA analysis.
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Multiple Comparisons

In a one-way classification, the overall F test is used to test:

H0 : µ1 = µ2 = . . . = µt v.s. H1 : µi are not all equal.

If we reject H0 in favor of H1, we conclude that at least one population
mean is different. The the follow-up analysis becomes determining which
population means are different and how they are different. To do this, we
will construct Tukey pairwise confidence intervals for all population
treatment mean differences µi − µi ′ , 1 ≤ i < i ′ ≤ t. If there are t
treatments, then there are (

t

2

)
=

t(t − 1)

2

pairwise confidence intervals to construct.
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Multiple Comparisons

In the mortar strength study, there are t = 4 populations and therefore 6
pairwise comparisons.

µ1 − µ2 µ1 − µ3 µ1 − µ4 µ2 − µ3 µ2 − µ4 µ3 − µ4

where

µ1 = population mean strength for mortar type OCM

µ2 = population mean strength for mortar type PIM

µ3 = population mean strength for mortar type RM

µ4 = population mean strength for mortar type PCM

Problem: If we construct multiple confidence intervals(here 6 of them),
and if we construct each one using 100(1− α) percent confidence level,
then the overall confidence level in the 6 intervals together will be less
than 100(1− α) percent.
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Multiple Comparisons

A well-known inequality in probability called Bonferroni’s Inequality
which states that if we have events A1,A2, . . . ,AJ , the probability that
each event occurs

P(
J⋂

j=1

Aj) ≥
J∑

j=1

P(Aj)− (J − 1)

To see how this inequality can be used in our current discussion, define the
event

Aj = {jth confidence interval includes its population mean difference}

for j = 1, 2, . . . , J. The event

J⋂
j=1

Aj = {each of the J intervals includes its population mean difference}
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Multiple Comparisons

In this light, consider the following table, which contains a lower bound on
how small this probability can be (for different values of t and J). This
table assumes that each pairwise interval has been constructed at the
nominal 1− α = 0.95 level.

# of treatment (t) # of intervals J =
(t
2

)
Lower bound

3 3 3(0.95)− 2 = 0.85
4 6 6(0.95)− 5 = 0.70
5 10 10(0.95)− 9 = 0.50
...

...
...

10 45 45(0.95)− 44 = −1.25!!

For t = 4 treatments(populations), the probability that each of the 6 95
confidence intervals will contain its population mean difference can be as
low as 0.7! For larger experiments with more treatments, this probability is
even lower!!

Chong Ma (Statistics, USC) STAT 509 Spring 2017 April 10, 2017 27 / 32



Multiple Comparisons

Goal: Construct confidence intervals for all pairwise intervals
µi − µi ′ , 1 ≤ i < i ′ ≤ t, and have our family-wise confidence level still
be at 100(1− α) percent. By “family-wise”, we mean that out level of
confidence applies to the collection of all

(t
2

)
intervals (not to the intervals

individually).
Solution: Increase the confidence level associated with each individual
interval. Tukey’s method is designed to do this. The intervals are of the
form:

(Ȳi+ − Ȳi ′+)± qt,N−t,α

√
MSres(

1

ni
+

1

ni ′
)

where qt,N−t,α is the Tukey quantile that guarantees a family-wise
confidence level of 100(1− α) percent.
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Multiple Comparisons

Mortar data: We use R to construct the Tukey confidence intervals. The
family-wise confidence level is 95 percent.

> TukeyHSD(aov(lm(strength ~ mortar.type)),conf.level=0.95)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = lm(strength ~ mortar.type))

$mortar.type

diff lwr upr p adj

PCM-OCM 2.48000 -4.950955 9.910955 0.8026758

PIM-OCM 15.21575 8.166127 22.265373 0.0000097

RM-OCM 12.99875 5.949127 20.048373 0.0001138

PIM-PCM 12.73575 5.686127 19.785373 0.0001522

RM-PCM 10.51875 3.469127 17.568373 0.0016850

RM-PIM -2.21700 -8.863448 4.429448 0.8029266
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Multiple Comparisons

In the R output, the columns labeled lwr and upr give, respectively, the
lower and upper limits of the pairwise confidence intervals.

PCM-OCM: We are (at least)95 percent confident that the difference
in the population mean strengths for the PCM and OCM mortars is
between -4.95 and 9.91 MPa.

PIM-OCM: We are (at least)95 percent confident that the difference
in the population mean strengths for the PIM and OCM mortars is
between 8.17 and 22.27 MPa.

Interpretations for the remaining 4 confidence intervals are written
similarly.

If a pairwise confidence interval (for two population means) includes
0, then these population means are not declared to be different;
otherwise, the population means are declared to be different.

Had we not used an adjusted analysis based on Tukey’s method, our
overall confidence level would have been much lower.
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Multiple Comparisons
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